Уровни организации живой природы
Иерархичность организации живой материи позволяет условно подразделить ее на ряд уровней.Уровень организации живой материи – это функциональное место биологической структуры определенной степени сложности в общей иерархии живого. Выделяют следующие уровни организации живой материи: молекулярный, субклеточный, клеточный, органно-тканевой, организменный, популяционно-видовой, биоценотический, биогеоценотический, биосферный.
1. Молекулярный (молекулярно-генетический).
На этом уровне живая материя организуется в сложные высокомолекулярные органические соединения, такие, как белки, нуклеиновые кислоты и др.
2. Субклеточный (надмолекулярный).
На этом уровне живая материя организуется в органоиды: хромосомы, клеточную мембрану, эндоплазматическую сеть, митохондрии, комплекс Гольджи, лизосомы, рибосомы и другие субклеточные структуры.
3. Клеточный. На этом уровне живая материя представлена клетками. Клетка является элементарной структурной и функциональной единицей живого.
4. Органно-тканевой. На этом уровне живая материя организуется в ткани и органы. Ткань – совокупность клеток, сходных по строению и функциям, а также связанных с ними межклеточных веществ. Орган – часть многоклеточного организма, выполняющая определенную функцию или функции.
5. Организменный (онтогенетический).
На этом уровне живая материя представлена организмами. Организм (особь, индивид) – неделимая единица жизни, ее реальный носитель, характеризующийся всеми ее признаками.
6. Популяционно-видовой.
На этом уровне живая материя организуется в популяции. Популяция – совокупность особей одного вида, образующих обособленную генетическую систему, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида. Вид – совокупность особей (популяций особей), способных к скрещиванию с образованием плодовитого потомства и занимающих в природе определенную область (ареал).
7. Биоценотический.
На этом уровне живая материя образует биоценозы. Биоценоз – совокупность популяций разных видов, обитающих на определенной территории.
8. Биогеоценотический. На этом уровне живая материя формирует биогеоценозы. Биогеоценоз – совокупность биоценоза и абиотических факторов среды обитания (климат, почва).
9. Биосферный. На этом уровне живая материя формирует биосферу. Биосфера – оболочка Земли, преобразованная деятельностью живых организмов.
Необходимо отметить, что биогеоценотический и биосферный уровни организации живой материи выделяют не всегда, поскольку они представлены биокосными системами, включающими не только живое вещество, но и неживое. Также часто не выделяют субклеточный и органно-тканевой уровни, включая их в клеточный и организменный соответственно.
Предсказать свойства каждого следующего уровня на основе свойств предыдущих уровней невозможно так же, как нельзя предсказать свойства воды, исходя из свойств кислорода и водорода. Такое явление носит название эмерджентность, то есть наличие у системы особых, качественно новых свойств, не присущих сумме свойств ее отдельных элементов. С другой стороны, знание особенностей отдельных составляющих системы значительно облегчает ее изучение. Таким образом, в науке вообще, и в экологии в частности, целесообразно оптимальное сочетание двух подходов к познанию окружающего мира – анализа и синтеза. Анализ –
расчленение объекта на отдельные составляющие его элементы и их последующее изучение. Синтез – исследование объекта в целом.
Предыдущие материалы:
|
Следующие материалы:
|
Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные
корректировки и доработки
Узнайте стоимость своей работы
Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.
Расчет
стоимостиГарантииОтзывы
История возникновения понятия
В середине XVIII в. французский врач Ф. Вик-д’Азир выразил мысль о связи жизни со всей окружающей средой. Впервые концепцию существования единой оболочки, в пределах которой существуют живые организмы или продукты их жизнедеятельности, вывел французский естествоиспытатель Ж. Б. Ламарк в начале XVIII в. В середине второй половины XIX в (1875 г.) другой ученый, австрийский геолог Э. Зюсс, ввел в обращение термин «биосфера».
Согласно терминологии Э. Зюсса, биосфера – это «тонкая пленка жизни», окутывающая земную поверхность и определяющая ее облик.
Панспермия – теория космического переноса биомассы
Основоположником и создателем учения о преобразовании планеты живыми организмами был В. И. Вернадский. В начале ХХ в (1926 г.) советский ученый определил активное участие биологических видов в формировании геологических структур планеты. При разработке учения академик не исключал концептуальной связи совокупной экосистемы с теорией панспермии (космического переноса биомассы).
Популяционно — видовой уровень
Определение 3
Определённые отрасли биологии (морфология, физиология, генетика, экология) изучают элементарную единицу эволюционного процесса — популяцию — совокупность особей одного вида, населяющих определённую территорию, более или менее изолированную от соседних групп.
Изучение состава и динамики популяции неразрывно связано с молекулярным, клеточным и организменным уровнями.
Методами исследования являются методы тех наук, которые изучают конкретно поставленные на этом уровне вопросы:
- генетические методы — характер распределения наследственных особенностей в популяциях;
- морфологические
- физиологические
- экологические.
Популяция и вид как целое могут служить объектами исследования самых разных биологических отраслей.
Слои и оболочки биосферы
Чтобы понять масштабы обитаемой оболочки Земли, нужно знать, из чего состоит биосфера. Оболочка имеет сферическую форму и полностью окружает планету, создавая тесную связь экосистем. Морфологическая структура биосферы представлена следующими слоями:
- атмосфера;
- литосфера;
- гидросфера.
С биосферой соприкасаются внешние слои, в которые живые организмы попадают только лишь случайным образом. Под литосферой расположена метабиосфера, которая сформирована ранее существовавшими в ней живыми формами, но необитаемая в настоящем. Верхняя часть атмосферы – парабиосфера. В этом пространстве организмы могут существовать условно, не размножаясь и не доживая до естественной гибели.
В глобальном понимании, во всех этих слоях земного пространства происходит или когда-то происходило воздействие живой среды на неживую. Общее название всех оболочек – мегабиосфера. С учетом деятельности человека в околоземном пространстве (космической экспансии), конгломерат слоев называют панбиосферой.
Атмосфера (воздушная оболочка)
Газовая прослойка, в состав которой входят кислород, азот, двуокись углерода, является неотъемлемой частью биосферы. Химические соединения отвечают за дыхательные процессы и переход мертвой органики в минералы, формируют биомассу, участвуют в фотосинтезе. Атмосфера защищена озоном, слой которого защищает живые формы от воздействия губительного УФ излучения.
Литосфера (твердая оболочка)
Один из слоев биосферы – литосфера, которая объединяет земную кору и часть мантии. Жизненные формы распространены только в верхнем слое грунта. Бактерии обнаруживаются на глубине 2-3 м под поверхностью (в отдельных случаях обнаружены микроорганизмы на глубине до 4 км). Почвенный слой сформирован из минеральных и органических останков биомассы. В новом цикле роста жизненные формы получают питание из почвы, затем удобряют ее в течение жизни, а также после гибели.
Гидросфера (водная оболочка)
Гидросфера содержит в себе все водные запасы на планете, включая снеговой и ледяной покровы, водяной пар, донные отложения. Вода, из которой состоит этот слой биосферы – главное условие для существования углеродных форм жизни и растений. Большая часть животной органики поглощает и выделяет энергию именно в воде.
МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ УРОВЕНЬ
На уровне макромолекул
степень сложности систем, по сравнению с обычными молекулами, растет. Однако этот уровень еще не достаточен для возникновения полноценной жизни.
Макромолекулами принято называть очень крупные, обычно полимерные (многозвенные) молекулы. В живых организмах различают четыре типа макромолекул: углеводы, липиды, белки и нуклеиновые кислоты (рис. 2). Они образуют химическую основу клеток, хотя некоторые углеводы и белки входят также в состав межклеточного вещества, обычно вместе с солями (основное вещество хряща, кости).
Рис. 2
. Структура основных макромолекул.
Углеводы
бывают простые — моносахариды (такие как глюкоза, лактоза) и сложные — полисахариды, образованные сотнями и тысячами соединенных моносахаридов. Некоторые полисахариды выполняют опорную функцию — целлюлоза (клетчатка) у растений, хитин у раков, насекомых, грибов. Но в основном углеводы используются как топливо для получения энергии (см. Тему 2).
Липиды,
или жироподобные вещества, имеют длинные «хвосты» из углеродно-водородных единиц, прикрепленные к «головке» — видоизмененной молекуле глицерина. Хвосты отталкивают воду (гидрофобны), поэтому два слоя липидных молекул, обращенные друг к другу хвостами, образуют водо- и иононепроницаемую пленку — мембрану. Из мембран построены оболочки клеток и некоторых внутриклеточных органоидов. Кроме того, липиды, как и углеводы, заключают в себе много энергии и используются в качестве топлива.
Белки
— основные биополимеры, так как выполняют большинство жизненных функций (см. Тему 2). Белковая цепь — полипептид — сложена из большого числа (50-100-500 и более) мономеров — аминокислот (включают аминогруппу -NH2
и кислотную группу -COOH). Имеется 20 разновидностей аминокислот, и чередование их беспорядочно (но строго определенно для каждого вида белка), так что возможное разнообразие белковых цепей бесконечно велико, что и дает возможность белкам выполнять очень разные функции. Наибольшим разнообразием отличаются белки-ферменты
— катализаторы биохимических реакций.
Нуклеиновые кислоты
(от латинского nuсleus — ядро) впервые были выделены из клеточных ядер и представляют самые сложные макромолекулы. Различают дезоксирибонуклеиновую кислоту — ДНК и рибонуклеиновую кислоту — РНК. ДНК — двухцепочечный полимер, РНК — одноцепочечный. Мономерами в обоих случаях являются довольно крупные и сложные молекулы — нуклеотиды. ДНК хранит информацию о структуре всех клеточных белков, РНК способствует ее реализации в момент синтеза новых белков (подробнее об этом см. Тему 3). Фрагмент ДНК, кодирующий структуру одной молекулы белка, называется геном
.
Макромолекулы обычно объединяются в макромолекулярные комплексы
, или даже в особые структуры, называемые органоидами
клетки (по аналогии с органами сложного организма). Типичными органоидами являются рибосомы — элементарные структуры, ведущие синтез белка, миофибриллы — сократимые нити в мышечных клетках, митохондрии — производители клеточной энергии, хромосомы — хранители ДНК, то есть генов.
Макромолекулы и их комплексы, гены, клеточные органоиды отвечают за отдельные свойства жизни — наследственность, синтезы, движение, энергетический обмен и др., но и эти свойства могут проявляться только в системе целостной клетки. Даже вирусы
, которые считаются внеклеточными формами жизни, вне клетки представляют фактически макромолекулярные кристаллы, не способные размножаться, синтезировать белки, усваивать энергию. Поэтому некоторые ученые вообще не считают вирусы живыми образованиями.
Таким образом, отдельные молекулярно-генетические структуры не обеспечивают того критического уровня сложности, который можно было бы назвать полноценной жизнью.
Круговорот вещества в биосфере
Непрерывный процесс эволюции жизни и геологических формаций на нашей планете возникает при переходе (трансформации) химических веществ. Такие условия применимы для биомассы, которая обеспечивает круговорот вещества в биосфере. Биогенная цепочка имеет несколько этапов:
- потребление и усвоение питательные веществ;
- возвращение их в среду обитания после пищевой переработки или гибели потребителя;
- разложение и минерализация органики.
В процессе трансформации химические элементы постоянно связываются и высвобождаются, перемещаясь в горизонтальном и вертикальном направлении по всей обитаемой оболочке.
Биотический круговорот происходит при участии следующих представителей биомассы:
- продуценты – создатели органики (растения, бактерии);
- консументы – потребители органики (животные);
- редуценты – разрушители органики (микроорганизмы, грибы).
Продуценты образуют восходящую ветвь, а консументы и редуценты формируют нисходящую ветвь круговорота. Взаимодействие компонентов биомассы направлено на непрерывное производство и разложение веществ.
Состав и структурное строение биосферы
Состав биосферы отличается разнообразием веществ. Составные компоненты находятся в состоянии непрерывного движения. В. И. Вернадский классифицировал основные компоненты обитаемой биооболочки, выделив их в 4 группы. Химическая структура глобальной экосистемы включает следующие вещества:
- Живое вещество. К этой категории относятся флора, фауна, представители микромира, прочие живые организмы. Органика и углеродные формы жизни осуществляют геохимические процессы, формируя облик планеты. Общая масса живого вещества составляет 0,01-0,02 % от совокупной массы неживых веществ.
- Биогенное вещество. Категория включает все продукты переработки, которые изменяются во время циклов рождения, питания, размножения, смерти, разложения, других функциональных процессов биомассы. Масштабы биогенного вещества соответствуют нефтяным и угольным месторождениям, осадочным породам, другим следам былой жизнедеятельности организмов.
- Косное вещество. К этому классу относят горные породы, лаву, метеоритные глыбы, образовавшиеся без участия переработки биомассой.
Лава – пример косного вещества
Биокосное вещество. Класс веществ, образующихся из косной материи при участии органических форм жизни. Основные представители биокосного вещества – почва и донный осадок.
Помимо основных категорий, выделяют радиоактивное вещество, находящееся в процессе деградации и вещество космического происхождения. Учитывая строение биосферы, концентрация веществ неравномерна на разных участках земной поверхности.
Как биосфера связана с другими оболочками планеты?
Биосфера – это обитаемая оболочка на поверхности и частично под поверхностью Земли. Ее связь с другими оболочками заключается во взаимном проникновении и взаимодействии – границы области обитания жизненных форм включают:
- гидросферу (без подземных вод);
- верхнюю часть литосферы;
- нижнюю часть атмосферы.
Вся деятельность организмов сосредоточена в этом небольшом, с космической точки зрения, пространстве.
Жизненные формы напрямую связаны со всеми оболочками, поскольку именно они формируют в них средовые условия.
Клеточный уровень
На клеточном уровне цитология, гистология, и их отделы (кариология, цито- и гистохимия, цитофизиология, цитогенетика), многие разделы физиологии, микробиологии и вирусологии изучают строение клетки и внутренних клеточных компонентов, а также связи и отношения между клетками в тканях и органах организма. Свободноживущих неклеточных форм жизни не существует.
Клетка — основная самостоятельная функциональная и структурная единица многоклеточного организма. Существуют одноклеточные организмы (водоросли, грибы, простейшие, бактерии). Также клетка есть единицей развития всех живых организмов, которые существуют на Земле. Свойства клетки определяются её компонентами, осуществляющими различные функции.
Определение 1
Совокупность клеток одного типа образует ткань. Сочетание нескольких тканей — орган, который выполняет определённую функцию в организме.
Благодаря исследованиям на клеточном уровне изучены основные компоненты клетки, строение клеток и тканей, их изменения в процессе развития.
Методы исследования на клеточном уровне:
- микроскопия (световой микроскоп позволяет видеть объекты до 1 мкм);
- цветные гистохимические реакции (выявление локализации в клетке различных химических веществ и ферментов);
- авторадиография (выявление в клетке мест синтеза макромолекул);
- электронная микроскопия (различение структур вплоть до макромолекул, хотя описание их строения часто затруднительно из-за недостаточной контрастности изображения);
- центрифугирование (изучение функций внутриклеточных компонентов — их выделяют из разрушенных (гомогенизированных) клеток);
- культура тканей (исследование свойств клеток);
- микрохирургия (обмен ядрами между клетками, слияние (гибридизация) клеток.
Границы распространения оболочки
Размеры оболочки ограничены зонами, в пределах которых может развиваться органическая жизнь (биомасса). Высота и глубина обитаемой зоны составляют:
- верхняя граница проходит в тропосфере, на высоте 15-20 км от уровня земной поверхности (ограничивается озоновым слоем на уровне начала стратосферы);
- нижняя граница углубляется в литосферу, на глубину от 3,5 до 7,5 км;
- в пределах между земной поверхностью и атмосферой глубина гидросферы доходит до 10 км.
Наибольшая концентрация биомассы на границе тропосферы и литосферы. Ее средний суммарный объем составляет 550 млрд тонн углерода.
1.4. Уровни организации жизни
Живая природа – это целостная, но неоднородная система, которой свойственна иерархическая организация. Иерархической называется такая система, в которой части (или элементы целого) расположены в порядке от высшего к низшему. Иерархический принцип организации позволяет выделить в живой природе отдельные уровни, что весьма удобно при изучении жизни как сложного природного явления. Можно выделить три основные ступени живого: микросистемы, мезосистемы и макросистемы.
Микросистемы (доорганизменная ступень) включают в себя молекулярный (молекулярно-генетический) и субклеточный уровни.
Мезосистемы (организменная ступень) включают в себя клеточный, тканевый, органный, системный, организменный (организм как единое целое), или онтогенетический, уровни.
Макросистемы (надорганизменная ступень) включают в себя популяционно-видовой, биоценотический и глобальный уровни (биосферу в целом). На каждом уровне можно выделить элементарную единицу и явление.
Элементарная единица (ЭЕ) – это структура (или объект), закономерные изменения которой (элементарные явления, ЭЯ) составляют ее вклад в развитие жизни на данном уровне.
Иерархические уровни:
1) молекулярно-генетический уровень. ЭЕ представлена геном. Ген – это участок молекулы ДНК (а у некоторых вирусов — молекулы РНК), который ответствен за формирование какого – либо одного признака. Информация, заложенная в нуклеиновых кислотах, реализуется посредством матричного синтеза белков;
2) субклеточный уровень. ЭЕ представлена какой-либо субклеточной структурой, т. е. органеллой, которая выполняет свойственные ей функции и вносит свой вклад в работу клетки в целом;
3) клеточный уровень. ЭЕ – это клетка, которая является самостоятельно функционирующей элементарной биологической системой. Только на этом уровне возможны реализация генетической информации и процессы биосинтеза. Для одноклеточных организмов этот уровень совпадает с организменным. ЭЯ – это реакции клеточного метаболизма, составляющие основу потоков энергии, информации и вещества;
4) тканевый уровень. Совокупность клеток с одинаковым типом организации составляет ткань (ЭЕ). Уровень возник с появлением многоклеточных организмов с более или менее дифференцированными тканями. Ткань функционирует как единое целое и обладает свойствами живого;
5) органный уровень. Образован совместно с функционирующими клетками, относящимися к разным тканям (ЭЕ). Всего четыре основные ткани входят в состав органов многоклеточных организмов, шесть основных тканей образуют органы растений;
6) организменный (онтогенетический) уровень. ЭЕ – это особь в ее развитии от момента рождения до прекращения ее существования в качестве живой системы. ЭЯ – это закономерные изменения организма в процессе индивидуального развития (онтогенеза). В процессе онтогенеза в определенных условиях среды происходит воплощение наследственной информации в биологические структуры, т. е. на основе генотипа особи формируется ее фенотип;
7) популяционно-видовой уровень. ЭЕ – это популяция, т. е. совокупность особей (организмов) одного вида, населяющих одну территорию и свободно скрещивающихся между собой. Популяция обладает генофондом, т. е. совокупностью генотипов всех особей. Воздействие на генофонд элементарных эволюционных факторов (мутаций, колебаний численности особей, естественного отбора) приводит к эволюционно значимым изменениям (ЭЯ);
биоценотический (экосистемный) уровень. ЭЕ – биоценоз, т. е. исторически сложившееся устойчивое сообщество популяций разных видов, связанных между собой и с окружающей неживой природой обменом веществ, энергии и информации (круговоротами), которые и представляют собой ЭЯ;
9) биосферный (глобальный) уровень. ЭЕ – биосфера (область распространения жизни на Земле), т. е. единый планетарный комплекс биогеоценозов, различных по видовому составу и характеристике абиотической (неживой) части. Биогеоценозы обусловливают все процессы, протекающие в биосфере;
10) носферный уровень. Это новое понятие было сформулировано академиком В. И. Вернадским. Он основал учение o ноосфере как сфере разума. Это составная часть биосферы, которая изменена благодаря деятельности человека.
Предыдущая |
Клеточный и тканевой
На клеточном уровне главными структурными компонентами являются клетки и процессы, происходящие в них.
Клетка считается минимальной структурной единицей всего живого. Именно в ней происходят жизненно важные процессы. Она может быть как составляющей многоклеточных организмов, так и выступать в роли самостоятельного организма.
Клетки классифицируются на 2 категории:
- прокариотические;
- эукариотические.
К первым относятся клетки, которые не имеют ядра. Ко вторым — с наличием такового.
Чтобы выживать и выполнять свои функции, клетка должна:
- Получать и преобразовывать энергию, которую она извлекает из окружающей среды.
- Пропускать и перемещать нужные ей вещества с избирательностью.
- Модифицировать генетическую информацию.
- Регулировать внутреннее равновесие.
- Формировать новые клетки по истечении срока жизни предыдущих.
Клетки выполняют все функции, благодаря которым живут, дышат и размножаются состоящие из них организмы. Например, питание, дыхание, регуляция обмен веществ и т. д. Помимо этого, она должна взаимодействовать с мембраной и аналогичными ей элементами.
К первым относятся ткани:
- образовательная (отвечает за рост и образование);
- покровная (защищает растения);
- основная (образует питательные вещества);
- проводящая (транспортирует воду и минеральные вещества) ткани.
К животным тканям относятся:
- эпителиальная (отвечает за защиту);
- соединительная (транспорт веществ, защита организма);
- мышечная (движение тела, опора);
- нервная (отвечает за согласованную работу всех органов).
Одинаковые группы тканей образуют органы, которые составляют следующий организационный уровень.
Свойства организмов
Всех представителей биосферы (одноклеточных и многоклеточных) объединяют свойства живых организмов:
- размножение;
- обмен веществ;
- зависимость от энергии;
- рост;
- развитие;
- раздражимость;
- наследственность;
- изменчивость.
Кроме того, живые организмы имеют единый химический состав. Основные элементы живой материи – азот, кислород, углерод, водород. Из них формируются белки, жиры, углеводы, нуклеиновые кислоты.
Что мы узнали?
Из урока 9 класса биологии узнали об основных уровнях живой природы. Тема включала краткое описание иерархии живой природы, особенностей многоклеточных и одноклеточных организмов, а также отличительные свойства живых организмов.
-
/10
Вопрос 1 из 10
1.3. Уровни организации живой природы
Уровни организации живых систем отражают соподчиненность, иерархичность структурной организации жизни; отличаются друг от друга сложностью организации системы (клетка устроена проще по сравнению с многоклеточным организмом или популяцией).
Уровень жизни – это форма и способ ее существования (вирус существует в виде молекулы ДНК или РНК, заключенной в белковую оболочку – форма существования вируса. Однако свойства живой системы вирус проявляет, только попав в клетку другого организма, где он размножается – способ его существования).
Уровни организации | Биологи-ческая система | Компоненты, образующие систему | Основные процессы |
1.Молекулярно-генетический уровень | Молекула | Отдельные биополимеры (ДНК, РНК, белки, липиды, углеводы и др.); | На этом уровне жизни изучаются явления, связанные с изменениями (мутациями) и воспроизведением генетического материала, обменом веществ. |
2.Клеточный | Клетка | Комплексы молекул химических соединений и органоиды клетки | Синтез специфических органических веществ; регуляция химических реакций; деление клеток; вовлечение химических элементов Земли и энергии Солнца в биосистемы |
3.Тканевый | Ткань | Клетки и межклеточное вещество | Обмен веществ; раздражимость |
4.Органный | Орган | Ткани разных типов | Пищеварение; газообмен; транспорт веществ; движение и др. |
5. Организменный | Организм | Системы органов | Обмен веществ; раздражимость; размножение; онтогенез. Нервно-гуморальная регуляция процессов жизнедеятельности. Обеспечение гармоничного соответствия организма его среде обитания |
6. Популяционно-видовой | Популяция | Группы родственных особей, объединенных определенным генофондом и специфическим взаимо-действием с окружающей средой | Генетическое своеобразие; взаимодействие между особями и популяциями; накопление элементарных эволюционных преобразований; выработка адаптации к меняющимся условиям среды |
7.Биогеоцено-тический | Биогеоценоз | Популяции разных видов; факторы среды; пространство с комплексом условий среды обитания | Биологический круговорот веществ и поток энергии, поддерживающие жизнь; подвижное равновесие между живым населением и абиотической средой; обеспечение живого населения условиями обитания и ресурсами |
8.Биосферный | Биосфера | Биогеоценозы и антропогенное воздействие | Активное взаимодействие живого и неживого (косного) вещества планеты; биологический глобальный круговорот; активное биогеохимическое участие человека во всех процессах биосферы |
Часть А
А1. Уровень, на котором изучаются процессы биогенной миграции атомов, называется:
1) биогеоценотический 2) биосферный3) популяционно-видовой
4) молекулярно-генетический
А2. На популяционно-видовом уровне изучают:
1) мутации генов2) взаимосвязи организмов одного вида3) системы органов
4) процессы обмена веществ в организме
А3. Поддержание относительного постоянства химического состава организма называется
1) метаболизм 2) ассимиляция 3) гомеостаз
4) адаптация
А4. Возникновение мутаций связано с таким свойством организма, как
1) наследственность 2) изменчивость 3) раздражимость
4) самовоспроизведение
А5. Какая из перечисленных биологических систем образует наиболее высокий уровень жизни?
1) клетка амебы 2) вирус оспы 3) стадо оленей
4) природный заповедник
А6. Отдергивание руки от горячего предмета – это пример
1) раздражимости 2) способности к адаптациям3) наследования признаков от родителей
4) саморегуляции
А7. Фотосинтез, биосинтез белков – это примеры
1) пластического обмена веществ 2) энергетического обмена веществ3) питания и дыхания
4) гомеостаза
А8. Какой из терминов является синонимом понятия «обмен веществ»?
1) анаболизм 2) катаболизм 3) ассимиляция
4) метаболизм
Часть В
В1. Выберите процессы, изучаемые на молекулярно-генетическом уровне жизни:
1) репликация ДНК 2) наследование болезни Дауна3) ферментативные реакции 4) строение митохондрий5) структура клеточной мембраны
6) кровообращение
В2. Соотнесите характер адаптации организмов с условиями, к которым они вырабатывались
Часть С
С1. Какие приспособления растений обеспечивают им размножение и расселение?
С2. Что общего и в чем заключаются различия между разными уровнями организации жизни?
Значение биосферы для нашей планеты
Жизнь на нашей планете многочисленна и разнообразна. Своим существованием она обязана биооболочке, в пределах которой сложились уникальные условия для углеродных форм органики. В рамках глобальной экосистемы биология формирует геологическую среду.
Среди представителей биологических видов есть растения, животные, грибы, микроорганизмы и человек.
Значение биосферы для Земли неоценимо. В этой среде организмы постоянно взаимодействуют с отходами жизнедеятельности, неорганической материей, энергией Солнца. Возникает пищевая цепочка, которая создает ряд условий в пределах оболочки:
- атмосфера наполняется пригодными для дыхания газами в процессе фотосинтеза (поглощение углекислого газа, выделение кислорода);
- формируется рельеф планеты (осадочные породы);
- развивается видовое разнообразие.
Основное значение экосистемы для нашей планеты – непрерывное продолжение жизни, где конец одного жизненного цикла формирует питательную среду для следующего поколения. В органических структурах происходит циклическое накопление, а затем преобразование солнечной энергии. Это биологический круговорот, который создает условия, пригодные для развития растений, животных, других биологических видов.
ОНТОГЕНЕТИЧЕСКИЙ УРОВЕНЬ
Онтогенез
— это индивидуальное развитие организма, начиная от одной клетки (зиготы, образующейся при слиянии яйцеклетки и сперматозоида) до взрослого многоклеточного существа со множеством специализированных тканей и органов. Необходимость объединения этих подуровней в один онтогенетический уровень вызвана двумя причинами. Во-первых, зигота — по сути обычная клетка — уже представляет организм, хотя и на одноклеточной стадии развития. Во-вторых, в природе существуют не только многоклеточные, но и одноклеточные организмы как животного, так и растительного свойства — амеба, инфузория, эвглена, хлорелла и др. Бактерии — особо мелкие и безъядерные (прокариотные) клетки — тоже самостоятельные организмы, хотя живут обычно колониями. Так что понятия «клетка» и «организм» в определенных случаях совпадают.
Из сказанного следует очень важный вывод: клетка является наименьшей, то есть элементарной живой системой
, так как ей присущи все свойства живого организма, свойства жизни как явления
. Клетка, как и многоклеточный организм способна питаться, поглощать энергию, синтезировать вещества, двигаться, реагировать на раздражители, размножаться, приспосабливаться и д.т
. Этому способствует достаточно высокая степень структурной дискретности — внутреннее расчленение клетки на органоиды, изолированные отсеки — особенно выраженная у высших, эукариотных клеток (рис. 3).
Рис. 3
. Схема организации про- и эукариотной клеток.
Существует нерешенная проблема клеточного уровня (подуровня), связанная с наличием в природе двух типов клеточной организации — прокариот и эукариот. Прокариоты (доядерные)
— это мелкие (около 1 мкм) клетки, не имеющие ядра и других органоидов, типичных для эукариот. Наследственное вещество — ДНК — лежит свободно в цитоплазме, а прочие функциональные блоки тоже представлены небольшими макромолекулярными комплексами без оболочек. К прокариотам относятся все бактерии и так называемые сине-зеленые водоросли.Эукариоты
(с настоящим ядром)
— крупные (10-50 и более мкм) клетки, в которых ДНК в форме хромосом заключена в ядре и большинство рабочих структур, ферментов организовано в изолированных органоидах. Изолирующую роль для ядра и органоидов выполняют такие же липидно-белковые мембраны, как и мембрана клеточной поверхности. Эукариотную организацию имеют одноклеточные простейшие (амеба, инфузория и другие) и клетки многоклеточных организмов: грибов, растений, животных, включая человека. Суть проблемы не в размерных и даже не в структурных различиях двух типов клеток, а в том, что некоторые органоиды эукариотных клеток, такие как митохондрии и хлоропласты, похожи на прокариот — бактерий и сине-зеленых водорослей. Они имеют собственную ДНК, аппарат синтеза белка (рибосомы), систему энергообеспечения и, таким образом, мало зависят от других структур клетки, в частности от ядерной ДНК. На этом основании разработана симбиотическая гипотеза
о происхождении эукариотной клетки на основе симбиоза (взаимовыгодного объединения) некогда самостоятельных прокариотных клеток. В таком случае про- и эукариотные клетки не только по уровню сложности, но и по происхождению должны представлять разные — низший и высший — подуровни клеточного уровня организации. Этот пример показывает, что приведенная и общепринятая система уровней организации жизни не отражает всей сложности отношений между уровнями и подуровнями. Да и число подуровней можно увеличить, поскольку иерархическая сложность систем на самом деле значительно богаче.
Ткани и органы
представляют основные промежуточные подуровни между клеткой и организмом
. Естественно, что эти подуровни можно выделить только у многоклеточных животных, растений, грибов.
Например, у человека различают эпителиальную (покровную) ткань, мышечную, нервную и соединительную (рыхлую, плотную, хрящевую, костную, кровь и лимфу). Ткани состоят из клеток и межклеточного связующего вещества. Органы состоят из разных тканей. Так, сердце кроме основной мышечной ткани включает рыхлую соединительную, кровь, нервные элементы и эпителиальные оболочки. Головной мозг наряду с нервными клетками содержит питающие их кровеносные сосуды, желудочки, выстланные специальным эпителием. Многие органы объединены в системы органов (пищеварительную, кровеносную и др.).
Наконец, многоклеточный организм
, как и отдельная клетка, представляет законченный и устойчивый уровень биологической организации
. Организм, или особь, способен к самостоятельному существованию, размножению и развитию
.