Содержание
Слайд 1
Слайд 2
тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразовывает энергию пара в механическую работу.
Слайд 3
Слайд 4
Девятнадцатый век не зря называли веком пара. С изобретением паровой машины произошел настоящий переворот в промышленности, энергетике, транспорте. Появилась возможность механизировать работы, ранее требовавшие слишком много человеческих рук.
Слайд 5
Расширение объемов промышленного производства поставило перед энергетикой задачу всемерного повышения мощности двигателей. Однако первоначально вовсе не высокая мощность вызвала к жизни паровую турбину…
Слайд 6
Гидравлическая турбина как устройство для преобразования потенциальной энергии воды в кинетическую энергию вращающегося вала известна с глубокой древности. У паровой турбины история столь же долгая, ведь одна из первых конструкций известна под наименованием «турбины Герона» и датируется первым столетием до нашей эры. Однако сразу заметим — вплоть до XIX века турбины, приводимые в движение паром, являлись скорее техническими курьезами, игрушками, чем реальными промышленно применимыми устройствами.
Слайд 7
И только с началом индустриальной революции в Европе, после широкого практического внедрения паровой машины Д. Уатта, изобретатели стали присматриваться к паровой турбине, так сказать, «вплотную».
Слайд 8
Создание паровой турбины требовало глубокого знания физических свойств пара и законов его истечения. Изготовление ее стало возможным только при достаточно высоком уровне технологии работы с металлами, поскольку потребная точность изготовления отдельных частей и прочность элементов были существенно более высокими, чем в случае паровой машины.
Слайд 9
Однако время шло, техника совершенствовалась, и час практического применения паровой турбины пробил. Впервые примитивные паровые турбины были использованы на лесопилках в восточной части США в 1883-1885 гг. для привода дисковых пил.
Слайд 10
Паровая турбина Лаваля представляет собой колесо с лопатками. Струя пара, образующегося в котле, вырывается из трубы (сопла), давит на лопасти и раскручивает колесо. Экспериментируя с разными трубками для подачи пара, конструктор пришёл к выводу, что они должны иметь форму конуса. Так появилось применяемое до настоящего времени сопло Лаваля (патент 1889 г.)
Это важное открытие изобретатель сделал, скорее, интуитивно; понадобилось ещё несколько десятков лет, чтобы теоретики доказали, что сопло именно такой формы даёт наилучший эффект.
Слайд 11
Заниматься турбинами начал в 1881 г., а уже спустя три года ему выдали патент на собственную конструкцию: Парсонс соединил паровую турбину с генератором электрической энергии. С помощью турбины стало возможно вырабатывать электричество, и это сразу повысило интерес общества к паровым турбинам
В результате 15-летних изысканий Парсонс создал наиболее совершенную по тем временам реактивную многоступенчатую турбину. Он сделал несколько изобретений, повысивших экономичность этого устройства (доработал конструкцию уплотнений, способы крепления лопаток в колесе, систему регулирования числа оборотов).
Слайд 12
Создал комплексную теорию турбомашин. Он разработал оригинальную многоступенчатую турбину, которая с успехом демонстрировалась на Всемирной выставке, проходившей в столице Франции в 1900 г. Для каждой ступени турбины Рато рассчитал оптимальное падение давления, что обеспечило высокий общий коэффициент полезного действия машины.
Слайд 13
В его машине скорость вращения турбины была ниже, а энергия пара использовалась полнее. Поэтому турбины Кертиса отличались меньшими размерами и более надёжной конструкцией. Одна из главных областей применения паровых турбин — двигательные установки кораблей. Первое судно с паротурбинным двигателем — «Турбиния», — построенное Парсонсом в 1894 г., развивало скорость до 32 узлов (около 59 км/ч).
Слайд 14
Слайд 15
Слайд 16
Экспериментальный паровой грузовик НАМИ-012 на базе ЯАЗ-200 мог работать на угле, торфе и дровах
Слайд 17
Американский паровик Doble выпускался в крайне ограниченных количествах: с 1923 по 1932 годы было изготовлено всего 42 экземпляра. Образец на иллюстрации датирован 1929 годом.
Слайд 18
Паромобили марки Brooks покидают конвейер фабрики в Стратфорде, Онтарио, 1926 год.
Слайд 19
В настоящее время о паровом двигателе почти никто не вспоминает. Хотя всплеск интереса в послевоенные годы был — в связи с созданием компактных турбинных двигателей.
Посмотреть все слайды
Социально-экономическое влияние паровой машины
Социальное влияние
Внедрение паровых машин ускорило механизацию сельского хозяйства и, как следствие, исход из сельских районов, что, в свою очередь, привело к созданию более квалифицированной рабочей силы, пригодной для использования в промышленном секторе.
Используя количество паровых машин, установленных в 1800 году, в качестве синтетического индикатора технологических изменений и профессиональной статистики для измерения профессиональных навыков, устанавливается положительная корреляция между использованием паровых машин и долей квалифицированных рабочих на уровне округа. Экзогенные вариации в пластах углеродистых пород (содержащих уголь для питания двигателей) показывают, что эффект был причинным.
Хотя технологические изменения стимулировали формирование профессиональных навыков, они оказали в целом нейтральный эффект на формирование начального образования, что отразилось на грамотности и показателях охвата школьным образованием, которые не выросли особенно за это время. Неоднозначное влияние промышленной революции на формирование человеческого капитала подтверждает аргумент о том, что ранняя индустриализация Англии оказала нейтральное влияние на начальное образование, если не повредила ему. Это вызвало недостаточное развитие образования в том смысле, что общество было более заинтересовано в новых возможностях, которые предлагала промышленность, путем стимулирования формирования формальных профессиональных навыков за счет формального образования. Но наблюдаемые эффекты также показывают, что зарождение отрасли стимулировало формирование формальных профессиональных навыков, особенно специфических для отрасли.
Экономическое влияние
Паровые двигатели упростили процессы добычи и производства.
Первый пример — добыча угля. Этот процесс можно было упростить, а его производительность увеличить за счет внедрения паровой машины, которая оказала непосредственное влияние на падение цен на уголь в 17 веке.
На текстильную промышленность также повлиял прогресс, связанный с внедрением парового двигателя, который позволил использовать новые ткацкие станки, которые будут способствовать развитию мастерской. Таким образом, заводы и фабрики значительно разовьются, что приведет к разорению ремесленников и семейных предприятий. Все эти достижения обеспечивают беспрецедентный рост и производительность хлопковой промышленности. В то же время паровая машина все больше и больше развивается в различных отраслях промышленности и постепенно вытесняет гидравлическую энергию.
В металлургии также наблюдается значительный прогресс с внедрением парового двигателя, который позволил внедрить такие инновации, как замена древесины древесным углем при выплавке кокса или, в более общем смысле, в качестве топлива.
Ниже в хронологическом порядке представлена краткая история создания различных типов турбин.
I век нашей эры — самое раннее дошедшее до наших дней документальное свидетельство создания паровой турбины Героном Александрийским. К сожалению, данное изобретение долго рассматривалось в качестве игрушки и полный потенциал данной турбины так и не был изучен до конца.
1500 — Леонардо да Винчи рассматривал в своих чертежах так называемый «дымовой зонт», принцип работы которого заключался в следующем: огонь нагревал воздух, который затем поднимался через соединенные друг с другом лопасти. Эти лопасти вращали обычный вертел для жарки.
1551 — Таги-аль-Дин сконструировал паровую турбину, использовавшуюся в качестве источника питания самовращающегося вертела.
1629 — итальянский инженер Джованни Бранк создал мельницу, которая работала за счет того, что сильная струя пара вращала турбину и вращательное движение передавалось от турбины к шестеренке — ведомому механизму.
1678 — фламандский ученый Фердинанд Вербист разработал первое самоходное транспортное средство на основе паровой машины. Однако нет никаких доказательств, подтверждающих, что оно было построено на самом деле.
1791 — англичанин Джон Барбер разработал настоящую газовую турбину для приведения в движение безлошадной повозки и получил патент на свое изобретение.
1872 — венгерский изобретатель Франц Столц создал первый газотурбинный двигатель.
1890 — шведский инженер и изобретатель Густаф де Лаваль изобрёл сопло, которое предназначалось для подачи пара в турбину. Впоследствии оно получило его имя и используется по сей день в том же назначении.
1894 — англичанин Чарльз Парсонс получил патент на идею корабля — парохода, который приводится в движение паровой турбиной. Этот принцип тяги широко используется и в наши дни.
1895 — на электростанции в Кембридже были установлены три четырёхтонных генератора радиального потока Парсонса мощностью 100 кВт, которые использовались для электрического освещения городских улиц.
1903 — норвежец Эджидиус Эллинг построил первую газовую турбину, способную вырабатывать ещё больше энергии, чем было необходимо для её работы. В то время это рассматривалось как серьезное достижение, ведь о термодинамике тогда ещё не имели никакого представления. Такая газовая турбина вырабатывала 11 л.с. с использованием вращающихся компрессоров.
1913 — Никола Тесла получил патент на свою турбину Тесла, основанную на эффекте пограничного слоя.
1918 — компания General Electric, являющаяся в настоящее время одним из ведущих производителей турбин, запустила собственное производство для дальнейших продаж газовых турбин.
1920 — английский инженер Алан Арнольд Гриффит изменил теорию протекания газового потока в теорию течения газа по аэродинамической поверхности, которая была более формализована и применима к турбинам.
1930 — английский инженер-конструктор Фрэнк Уиттл получил патент на универсальную газовую турбину, предназначенную для реактивного движения. Двигатель с такой турбиной впервые был использован в апреле 1937 г.
1934 — аргентинский инженер Рауль Патерас Пескара запатентовал новое изобретение — поршневой двигатель, являющийся генератором для газовой турбины.
1936 — немецкие конструкторы Макс Хан и Ханс фон Охайн разработали и запатентовали в Германии собственный новый двигатель с реактивной турбиной. Они разрабатывали его в то же время, что и Фрэнк Уиттл в Великобритании.
История изобретения
История изобретения паровых машин связана со знаниями древнегреческой цивилизации. Долгое время трудами этой эпохи никто не пользовался. В XVI веке была предпринята попытка создать паровую турбину. Работал над этим в Египте турецкий физик и инженер Такиюддин аш-Шами.
Интерес к этой проблеме вновь появился в XVII веке. В 1629 году Джованни Бранка предложил свой вариант паровой турбины. Однако изобретения теряли большое количество энергии. Дальнейшие разработки требовали соответствующих экономических условий, которые появятся позднее.
Первым, кто изобрел паровую машину, считается Дени Папен. Изобретение представляло собой цилиндр с поршнем, поднимающимся за счет пара и опускающимся в результате его сгущения. Такой же принцип работы имели устройства Сэвери и Ньюкомена (1705). Оборудование применяли для выкачивания воды из выработок при добыче полезных ископаемых.
Окончательно усовершенствовать устройство удалось Уатту в 1769 году.
Двойной пар
В 1770-х годах Ватт увеличил мощность паровой машины, заменив атмосферное давление поршневым давлением пара. Теперь пар в рабочий цилиндр подавался с обеих сторон рабочего поршня, поднимая и опуская его. Ватт получил патент на машину с цилиндром двустороннего действия в 1776 году. Это был уже не атмосферный пар, а паровая машина.
Давление пара выше атмосферного и поддается регулированию: чем выше температура нагрева парового котла, тем больше пара вырабатывается, тем выше давление. Мощные ваттные двигатели пригодились не только для насосов, но и для паровых молотов, прессов, молотилок, сильфонов и других машин, где необходимо было механизировать вертикальное перемещение груза.
Паровая машина Ватта в 1769 году. При открытом клапане А пар из парового котла (1) поступал в рабочий цилиндр (2) и поднимал рабочий поршень (3). Коромысло с противовесом (4) опускается, поднимая рычаг (5) с рабочим и малым поршнями (6). Плунжер вытащили из насоса конденсатора (7). Клапан А был закрыт, клапан В открыт, и отработанный пар из цилиндра осаждается в вакууме конденсатора (8), где, окруженный холодной водой бассейна (9), он охлаждается и превращается в воду. Атмосферное давление опустило оба поршня. Клапан B был закрыт, клапан C открыт, и горячая вода, отжатая из конденсатора, попала в котел. Цикл был замкнут.
Применение паровых машин на практике.
Машина Ньюкомена вскоре стала известна повсюду и, в частности, была усовершенствована, разработанной Джеймсом Уаттом в 1765 году системой двойного действия. Теперь паровая машина оказалась достаточно завершенной для использования в транспортных средствах, хотя из-за своих размеров лучше подходила для стационарных установок. Уатт предложил свои изобретения и в промышленности; он построил также машины для текстильных фабрик.
Первая паровая машина, используемая в качестве средства передвижения, был изобретена французом Николя Жозефом Куньо, инженером и военным стратегпм-любителем. В 1763 или 1765 году он создал автомобиль, который мог перевозить четырех пассажиров при средней скорости 3,5 и максимальной – 9,5 км/час. За первой попыткой последовала вторая – появился автомобиль для транспортировки орудий. Испытывался он, естественно, военными, но из-за невозможности продолжительной эксплуатации (непрерывный цикл работы новой машины не превышал 15 минут) изобретатель не получил поддержки властей и финансистов. Между тем в Англии совершенствовалась паровая машина. После нескольких безуспешных, базировавшихся на машине Уаттa попыток Мура, Вильяма Мердока и Вильяма Саймингтона, появилось рельсовое транспортное средство Ричарда Тревисика, созданное по заказу Уэльской угольной шахты. В мир пришел активный изобретатель: из подземных шахт он поднялся на землю и в 1802 году представил человечеству мощный легковой автомобиль, достигавший скорости 15 км/час на ровной местности и 6 км/час на подъеме.
Приводимые в движение паром транспортные средства все чаще использовались и в США: Натан Рид в 1790 году удивил жителей Филадельфии своей моделью парового автомобиля. Однако еще больше прославился его соотечественник Оливер Эванс, который спустя четырнадцать лет изобрел автомобиль-амфибию. После наполеоновских войн, во время которых «автомобильные эксперименты» не проводились, вновь началась работа над изобретением и усовершенствованием паровой машины. В 1821 году ее можно было считать совершенной и достаточно надежной. С тех пор каждый шаг вперед в сфере приводимых в движение паром транспортных средств определенно способствовал развитию будущих автомобилей.
В 1825 году сэр Голдсуорт Гарни на участке длиной 171 км от Лондона до Бата организовал первую пассажирскую линию. При этом он использовал запатентованную им карету, имевшую паровой двигатель. Это стало началом эпохи скоростных дорожных экипажей, которые, однако, исчезли в Англии, но получили широкое распространение в Италии и во Франции. Подобные транспортные средства достигли наивысшего развития с появлением в 1873 году «Реверанса» Амедэ Балле весом 4500 кг и «Манселя» – более компактного, весившего чуть более 2500 кг и достигавшего скорости 35 км/час. Оба были предвестниками той техники исполнения, которая стала характерной для первых «настоящих» автомобилей. Несмотря на большую скорость кпд паровой машины был очень маленький. Болле был тем, кто запатентовал первую хорошо действующую систему рулевого управления, он так удачно расположил управляющие и контрольные элементы, что мы и сегодня это видим на приборном щитке.
Несмотря на грандиозный прогресс в области создания двигателя внутреннего сгорания, сила пара все еще обеспечивала более равномерный и плавный ход машины и, следовательно, имела много сторонников. Как и Болле, который построил и другие легкие автомобили, например Rapide в 1881 году со скоростью движения 60 км/час, Nouvelle в 1873 году, которая имела переднюю ось с независимой подвеской колес, Леон Шевроле в период между 1887 и 1907 годами запустил несколько автомобилей с легким и компактным парогенератором, запатентованным им в 1889 году. Компания De Dion-Bouton, основанная в Париже в 1883 году, первые десять лет своего существования производила автомобили с паровым двигателями и добилась при этом значительного успеха – ее автомобили выиграли гонки Париж-Руан в 1894 году.
Успехи компании Panhard et Levassor в использовании бензина привели, однако, к тому, что и De Dion перешел на двигатели внутреннего сгорания. Когда братья Болле стали управлять компанией своего отца, они сделали то же самое. Затем и компания Chevrolet перестроила свое производство. Автомобили с паровыми двигателями все быстрее и быстрее исчезали с горизонта, хотя в США они использовались еще до 1930 года. На этом самом моменте и прекратилось производство и изобретение паровых машин
Парашют — Котельников
В 1910 году в Санкт-Петербурге во время Всероссийского праздника воздухоплавания трагически погиб лучший в то время летчик Л. М. Мациевич. Исполняя пожелание великого князя Александра Михайловича увидеть авиационное достижение, он поднял свой самолёт на небывалую для того времени высоту — 1000 м от земли. После чего самолёт неожиданно стал разваливаться, а лётчик вслед за обломками своей машины разбился на глазах у зрителей.
Эта смерть так потрясла русского изобретателя — очевидца тех событий — Глеба Евгеньевича Котельникова, что он немедленно приступил к разработке парашюта и достиг своей цели уже через год. Так, в 1911 году появился первый ранцевый парашют — РК-1. Его купол был изготовлен из шелка, а стропы разделялись на 2 группы. И купол, и стропы укладывались в ранец. Позже, в 1923 году Котельников предложил ранец-конверт для укладки парашюта. По неясным причинам в России, даже после проведения успешных испытаний с манекеном весом в 80 кг, отказались пустить изобретение в производство.
20 марта 1912 года уже другой изобретатель во Франции получил на него патент.
Тем не менее, первый в истории прыжок с парашютом был все же совершён русским — 5 января 1913 года студент Петербургской консерватории В. Оссовский успешно прыгнул в Руане с моста через Сену с высоты 60 м.
А об изобретении Котельникова в России вспомнили только в первую мировую войну.
Скорость испарения и площадь поверхности жидкости
Возьмем два сосуда одинакового объема, но разной формы. Один широкий, а второй — узкий (рисунок 4). Заполним их водой одной и той же массы.
Рисунок 4. Зависимость скорости испарения от площади поверхности жидкости
Наблюдения покажут, что вода из широкого сосуда будет испаряться быстрее, чем из узкого.
Испарение происходит с поверхности жидкости. Значит, чем больше поверхность, тем большее количество молекул одновременно вылетает в воздух.
Зачем мы развешиваем белье после стирки? Чтобы оно быстрее высохло. Ведь в скомканном состоянии его площадь намного меньше, чем в расправленном виде.
Применение паровых турбин
Современные паровые турбины широко используются во многих сферах.
Например, на электростанциях генератор электрического тока зачастую соединяют с турбиной. Такие турбины могут вращаться, выполняя до 3000 оборотов в минуту. Это позволяет использовать их для приведения в движение генераторов тока.
Также тепловые турбины устанавливают на тепловых электростанциях. В 2017 году на Уральском турбинном заводе была выпущена паровая турбина, электрическая мощность которой достигает $335 \space МВт$, а тепловая нагрузка — $385 \frac{Гкал}{ч}$ (рисунок 4). Этого достаточно, чтобы обеспечить теплом более 100 000 квартир.
Рисунок 4. Энергетическая паровая турбина Т-295
Паровые турбины стоят и на различных заводах. На производстве данные турбины функционируют на отработавшем паре, позволяя получить из практически “отходов производства” полезную энергию. Используют их и на кораблях в качестве главного или вспомогательного двигателя.
Одной из самых мощных паровых турбин в мире на сегодняшний день является турбина Siemens SST5-9000 (рисунок 5). Ее мощностью составляет $1900 \space МВт$. Спрос на такие мощности очень мал, так как реализовать такой потенциал можно только на атомных электростанциях.
Рисунок 5. Турбина Siemens SST5-9000
На сухопутном и воздушном транспорте паровые турбины не используют, потому что для их функционирования необходимо большое количество пара, а следовательно, и жидкости.
Тетрис
Середина 80-х. Время, овеянное легендами. Идея тетриса родилась у Алексея Пажитнова в 1984 году после знакомства с головоломкой американского математика Соломона Голомба Pentomino Puzzle. Суть этой головоломки была довольно проста и до боли знакома любому современнику: из нескольких фигур нужно было собрать одну большую. Алексей решил сделать компьютерный вариант пентамино. Пажитнов не просто взял идею, но и дополнил ее: в его игре собирать фигурки в стакане предстояло в реальном времени, причем сами фигурки состояли из пяти элементов и во время падения могли проворачиваться вокруг собственного центра тяжести. Но компьютерам Вычислительного центра это оказалось не под силу — электронному пентамино попросту не хватало ресурсов. Тогда Алексей принимает решение сократить количество блоков, из которых состояли падающие фигурки, до четырех. Так из пентамино получился тетрамино. Новую игру Алексей нарекает “тетрисом”.
Автомат
С 1913 года изобретатель Владимир Григорьевич Федоров приступает к работам, заключающимся в испытаниях автоматической винтовки (ведущей стрельбу очередями) под патрон калибра 6,5 миллиметра, которая являлась плодом его разработки. Уже спустя три года такими винтовками уже вооружают солдат 189-го Измаильского полка. Но серийный выпуск автоматов удалось развернуть лишь после окончания революции. На вооружении отечественной армии оружие конструктора находилось вплоть до 1928 года. Но, согласно некоторым данным, в период Зимней войны с Финляндией войсками все же использовались некоторые экземпляры автомата Федорова.
Цветная фотография
Если раньше всё происходящее стремилось попасть на бумагу, то теперь вся жизнь направлена на получение фотографии. Поэтому без этого изобретения, ставшего частью маленькой, но насыщенной истории фотографии, мы бы не увидели такой “реальности”. Сергей Михайлович Прокудин-Горский разработал особую фотокамеру и представил своё детище миру в 1902 году. Эта камера была способна делать три снимка одного и того же изображения, каждый из которых пропускался сквозь три совершенно разных световых фильтра: красный, зеленый и синий. А патент, полученный изобретателем в 1905 году, можно без преувеличения считать началом эры цветной фотографии в России. Это изобретение становится намного качественнее наработок зарубежных химиков, что является важным фактом ввиду массового интереса к фотографии по всему миру.
Двигатель переменного тока
Двигатель переменного тока или асинхронная машина — это ещё один этап в развитии идей применения переменного тока. Генератор переменного тока мы уже обсудили, значит электричество мы получаем, но что с ним делать дальше? У нас ведь нет машин, которые бы работали от переменного тока! Вот Тесла их и изобрёл.
Патент Теслы на электрический двигатель 1888 года
В 1880-е года множество изобретателей пыталось изобрести рабочие варианты двигателей переменного тока, но сделать этого не удавалось. Галилео Феррарис занимается теоретическим исследованием создания двигателей переменного тока и приходит к ошибочному выводу, что они попросту не могут быть эффективными и коммерчески успешными. Это добавило мотивации изобретателям всего мира, это звучало как вызов — создать эффективный двигатель переменного тока. Тесла отвечает на этот вызов и демонстрирует в 1887 году свой первый вариант двигателя, работающего на переменном токе, а в 1887 году совершенствует свою модель, выпуская вторую машину.
Один из оригинальных электрических моторов Теслы 1888 года.
Основная причина, по которой рациональное использование двигателей переменного тока казалось невозможным, заключалась в том, что они были однофазовыми. Тесла же обосновал теоретически и доказал практически, что можно не ограничиваться одной фазой, а делать две или больше фаз.
На картинке ниже показано схематически устройство двух- и трёхфазных двигателей переменного тока:
Позже Тесла изобретает и патентует множество модифицированных моторов и двигателей переменного тока. Все эти патенты, как писалось выше, Тесла продаёт Вестингаузу.
Двухфазный электрический двигатель переменного тока из коллекции Вестингауза.
4-х фазный электрический двигатель переменного тока из коллекции Вестингауза.
Полифазный электрический двигатель переменного тока из коллекции Вестингауза.
Задавая вопросы
Джеймс
Уатт починил университетскую модель двигателя. Он в первый раз видел
двигатель Ньюкомена и изучил его с большим интересом. Почему он такой
неэффективный? Почему движение сопровождается такой тряской? Почему он
потребляет столько угля?
Двигатель
Ньюкомена был одноцилиндровым. Внутри цилиндра двигался поршень,
соединенный с балансиром, который приводил в движение насос. Пар из
котла попадал в цилиндр снизу и заставлял подниматься поршень, а тот, в
свою очередь,— балансир. Затем в цилиндр подавалась холодная вода — пар
конденсировался,давление, падало, и поршень опускался. Каждый раз,
когда внутрь поступает холодная вода, пар конденсируется, и топливо,
затраченное на то, чтобы произвести этот пар, пропадает напрасно. Для
очередного подъема поршня нужен новый пар — значит, нужно снова
нагревать котел, расходуя дополнительное топливо.
современный
Во время Первой и Второй мировой войны использование более совершенного оружия было единственным способом победить противника и одновременно продемонстрировать мощь не только военной, но и технической, и научной силы победивших стран..
Это дало толчок нескольким инженерным областям, в том числе аэронавтике, созданию самолетов для военного использования, а также военно-морских сил, благодаря использованию самых современных кораблей или подводных лодок..
С другой стороны, эти конфликты способствовали развитию машиностроения, особенно в боевых танках и вооружениях, которые с течением времени становились все более автоматизированными..
Таким образом, наконец, военное машиностроение отошло от простого машинизма и, скорее, стремилось найти специализированный путь в определенных задачах, связанных с управлением ресурсами, хотя и без полного игнорирования его механических и гражданских корней..
Ядерная инженерия была еще одной отраслью, которая в значительной степени поддерживалась войной, хотя она пыталась найти полезность в качестве источника энергии в излучении, которое эти элементы испускали при выполнении определенных процессов, полагая, что это будет источник чистой энергии..
Информация для всех
Другие великие достижения, которые привели в последние десятилетия к инженерным исследованиям, связаны с технологией; разработка компьютеров, электроники и программного обеспечения.
Это элементы, которые постепенно развиваются, что позволяет более демократизировать доступ к информации. Этот процесс начал расти с переполнением компьютеров в середине 1980-х годов, когда он стал популярным в домашних хозяйствах.
генетика
Наконец, один из видов инженерии, который поставил некоторые проблемы в области профессиональной этики, — это генетика..
Считается, что эксперименты с живыми существами, даже если речь идет только о животных, могут пойти вразрез с природой, помимо того, что неизвестны последствия этих процессов.
Но в 2019 году в Китае родились первые генетически модифицированные близнецы, что является беспрецедентным.
Появление конденсатора
В конце 17 века Джеймс Уатт создал тепловой двигатель — улучшенную версию паровой машины. В такой конструкции внутренняя энергия топлива превращалась в механическую энергию поршня.
Уатт провёл ряд опытов над уже существующими моделями паровых двигателей и убедился в их неэффективности. Он доказал, что в них три четверти пара расходуются без пользы: во время каждого цикла пар должен согревать цилиндр, потому что перед ним там находилась холодная вода, так как от разницы температур создавалось большое давление, из-за этого большая часть энергии тратилась на обогрев, вместо того, чтобы быть преобразованной в механическую энергию. Он изобрел конденсатор — устройство, понижающее давление в цилиндре путем конденсации части пара, камера сгорания была такой же температуры, как и входящий в неё пар.
Чарльз Алджернон Парсонс
Чарльз Парсонс родился в 1854 г. и получил классическое английское образование, закончив Кембриджский университет. Родом своей деятельности он избрал машиностроение и с 1976 г. стал работать на заводе Армстронга в Ньюкасле. Талант и изобретательность конструктора в сочетании с финансовыми возможностями родителей позволили Парсонсу быстро встать во главе собственного дела. Уже в 1883 г. он совладелец фирмы «Кларк, Чапмэн, Парсонс и Ко», а в 1889 г. — владелец собственного турбостроительного и динамостроительного завода в Гитоне.
Первую паровую многоступенчатую турбину реактивного типа Парсонс построил в 1884 г. Она предназначалась вовсе не для привода относительно маломощных сепараторов, а для работы совместно с электрическим генератором. Таким образом, уже с первого шага Парсонс правильно предугадал одну из наиболее перспективных областей применения паровых турбин, и в дальнейшем ему не пришлось разыскивать потребителей для своего изобретения. С целью уравновешивания осевого усилия пар подавался к середине вала турбины, а затем протекал к ее концам. Первая паровая турбина Парсонса имела мощность всего 6 л.с. и была подвергнута разнообразным испытаниям. Основные затруднения представляла разработка рациональной конструкции лопаток и способов их крепления в диске, а также обеспечение уплотнений. Уже в конструкции, датированной 1887 г., Парсонс применил лабиринтные уплотнения, что позволило перейти к турбинам с однонаправленным потоком пара. К 1889 г. число построенных турбин превысило 300 единиц, их мощность пока еще не достигла 100 л.с. при частоте вращения около 5000 об/мин. Такие турбины применялись преимущественно для привода электрических генераторов.
Взаимоотношения между компаньонами в «Кларк, Чапмэн, Парсонс и Ко» оказались далеко не безоблачными, и Парсонс вынужден был уйти, оставив бывшим коллегам и часть авторских прав, формально принадлежавших фирме. В связи с этим он надолго отказался от создания активных турбин (защищенных патентом) и перешел к разработке радиальных многоступенчатых турбин. Совершенствуя этот тип, конструктор сумел добиться впечатляющих результатов. Так, он уменьшил удельный расход пара с 44 до 12,7 кг/кВт·ч, но одновременно понял, что прежний аксиальный тип турбины был все же более перспективным. Начиная с 1894 г., восстановив права на патент, Парсонс вновь стал заниматься именно такими турбинами.
На своем заводе он опробовал самые различные материалы для лопаток турбин, но остановился на бронзе для насыщенного и умеренно перегретого пара, чистой меди для части высокого давления и никелевой бронзе для сильно перегретого пара. Кроме того, проводились глубокие исследования по созданию рациональной конструкции регулятора подачи пара. Для повышения точности Парсонс применил релейный принцип прерывистой подачи, позволяющий уменьшить трение. Параллельно вводились и другие усовершенствования, что в совокупности привело к уменьшению удельного расхода пара до 9,2 кг/кВт·ч у турбины мощностью 400 кВт, изготовленной в 1896 г.
Преимущества
Основным преимуществом парового оборудования является то, что котел может использовать в качестве топлива любой источник тепла, будь то уголь или уран. Это существенно отличает его от двигателя внутреннего сгорания. В зависимости от типа последнего требуется определенный вид топлива.
История изобретения паровых двигателей показала преимущества, которые очевидны даже сегодня, поскольку ядерная энергия может быть использована в качестве аналога пара. Сам по себе ядерный реактор не может преобразовать свою энергию в механическую работу, но он способен генерировать большое количество тепла. Затем он используется для генерации пара, который приводит машину в движение. Таким же образом можно использовать солнечную энергию.
Паровозы хорошо работают на больших высотах. На их эффективность не влияет низкое атмосферное давление в горах. Паровозы до сих пор используются в горах Латинской Америки.
Новые версии сухих паровозов используются в Австрии и Швейцарии. Они показывают высокую эффективность благодаря множеству улучшений. Они не требуют обслуживания и потребляют в качестве топлива фракции легкой нефти. По экономическим показателям они сопоставимы с современными электровозами. При этом паровозы намного легче своих дизельных и электрических аналогов. Это большое преимущество в гористой местности.